Acetic acid modulates spike rate and spike latency to salt in peripheral gustatory neurons of rats.
نویسندگان
چکیده
Sour and salt taste interactions are not well understood in the peripheral gustatory system. Therefore, we investigated the interaction of acetic acid and NaCl on taste processing by rat chorda tympani neurons. We recorded multi-unit responses from the severed chorda tympani nerve (CT) and single-cell responses from intact narrowly tuned and broadly tuned salt-sensitive neurons in the geniculate ganglion simultaneously with stimulus-evoked summated potentials to signal when the stimulus contacted the lingual epithelium. Artificial saliva served as the rinse and solvent for all stimuli [0.3 M NH(4)Cl, 0.5 M sucrose, 0.1 M NaCl, 0.01 M citric acid, 0.02 M quinine hydrochloride (QHCl), 0.1 M KCl, 0.003-0.1 M acetic acid, and 0.003-0.1 M acetic acid mixed with 0.1 M NaCl]. We used benzamil to assess NaCl responses mediated by the epithelial sodium channel (ENaC). The CT nerve responses to acetic acid/NaCl mixtures were less than those predicted by summing the component responses. Single-unit analyses revealed that acetic acid activated acid-generalist neurons exclusively in a concentration-dependent manner: increasing acid concentration increased response frequency and decreased response latency in a parallel fashion. Acetic acid suppressed NaCl responses in ENaC-dependent NaCl-specialist neurons, whereas acetic acid-NaCl mixtures were additive in acid-generalist neurons. These data suggest that acetic acid attenuates sodium responses in ENaC-expressing-taste cells in contact with NaCl-specialist neurons, whereas acetic acid-NaCl mixtures activate distinct receptor/cellular mechanisms on taste cells in contact with acid-generalist neurons. We speculate that NaCl-specialist neurons are in contact with type I cells, whereas acid-generalist neurons are in contact with type III cells in fungiform taste buds.
منابع مشابه
Statistical Analysis and Decoding of Neural Activity in the Rodent Geniculate Ganglion Using a Metric-Based Inference System
We analyzed the spike discharge patterns of two types of neurons in the rodent peripheral gustatory system, Na specialists (NS) and acid generalists (AG) to lingual stimulation with NaCl, acetic acid, and mixtures of the two stimuli. Previous computational investigations found that both spike rate and spike timing contribute to taste quality coding. These studies used commonly accepted computat...
متن کاملOdor-taste convergence in the nucleus of the solitary tract of the awake freely licking rat.
Flavor is produced by the integration of taste, olfaction, texture, and temperature, currently thought to occur in the cortex. However, previous work has shown that brainstem taste-related nuclei also respond to multisensory inputs. Here, we test the hypothesis that taste and olfaction interact in the nucleus of the solitary tract (NTS; the first neural relay in the central gustatory pathway) i...
متن کاملCentral effect of histamine on acetic acid-induced visceral nociception in rats
In the present study, the effects of intracerebroventricular (ICV) injections of histamine, chlorpheniramine (H1-receptor antagonist) and ranitidine (H2-receptor antagonist) were investigated on visceral nociception induced by an intraperitoneal (IP) injection of acetic acid in rats. The latency time to the beginning of the first abdominal wall contraction (the first writhe) was recorded and th...
متن کاملRecovery of functional response in the nucleus of the solitary tract after peripheral gustatory nerve crush and regeneration.
Single-unit recording and transganglionic tracing techniques were used to assess the properties of, and inputs to, neurons within the rostral nucleus of the solitary tract (NST) after peripheral gustatory nerve injury and regeneration in adult hamsters (Mesocricetus auratus). Tastant-evoked responses were recorded from 43 neurons in animals in which the ipsilateral chorda tympani (CT) nerve was...
متن کاملForskolin attenuates the paraoxon-induced hyperexcitability in snail neurons
Introduction: Since organophosphorus compounds (OP) are toxic and designed to destroy insects and pest species, there are many hazards associated with their use. Although, the main target site of these compounds is acetylcholinesterase (AChE), however it has become increasingly evident that OPs have also other direct effects on cellular processes. In the present study, the effects of low con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 108 9 شماره
صفحات -
تاریخ انتشار 2012